NOAA Technical Memorandum NWS ER-67

A COMPUTER CALCULATION AND DISPLAY SYSTEM FOR SLOSH HURRICANE SURGE MODEL DATA

John F. Townsend National Weather Service Office Charleston, South Carolina

Scientific Services Division Eastern Region Headquarters May 1984

> PROPERTY OF NOAA Library E/OC43 7600 Sand Point Way NS Seattle Wey S2115-0270

. • . . . ~

.

EDITOR'S NOTE

It is not our customary practice to publish computer programs for systems other than AFOS. We have made an exception in this case because of the potential value of this program to hurricane-prone areas. In order to use this program at locations other than Charleston, SC, Phase II of SLOSH must be completed for those locations and the results incorporated in this program.

NOTICE TO USERS

The information provided by this computer program was developed by utilizing "SLOSH", the National Weather Service storm-surge model. The SLOSH model, like any other operational model, is subject to prediction errors. Some of these are inherent in the model itself; others are related to initial data uncertainties; still others are tied to our incomplete understanding of air-sea interaction. The model was specifically developed for use in preparing community evacuation plans and as <u>guidance</u> in operational forecasting. Accordingly, the National Weather Service assumes no responsibility for further uses or interpretation of the SLOSH model output without its specific written concurrence.

<u>NOTE:</u> These values may differ significantly from those developed by the Federal Emergency Management Agency to delineate flood hazard zones and to assign actuarial rates under the National Flood Insurance Program (NFIP). NFIP values should not be used for hurricane evacuation planning, and storm evacuation values developed from the SLOSH model and this program should not be used for setting insurance rates.

i

A COMPUTER CALCULATION AND DISPLAY SYSTEM FOR "SLOSH" HURRICANE SURGE MODEL DATA

John F. Townsend National Weather Service Office Charleston, South Carolina

I. Summary

The National weather Service (NWS) has used computer models since the 1960's to simulate the effects of hurricanes as they approach land. These models, named SPLASH (Special Program to List the Amplitudes of Surges from Hurricanes) and SLOSH (Sea, Lake and Overland Surges from Hurricanes), compute storm surge heights under hypothetical hurricane conditions. The SPLASH model is useful for modeling hurricane effects along relatively smooth coastlines, while the SLOSH model is used for irregular coastlines, especially those with major bays and estuaries. The SLOSH model, which is able to gauge flooding for inland areas, is considerably more sophisticated than the SPLASH model. These models, especially SLOSH, have been increasingly used by local planners to determine evacuation routes to use during hurricane conditions.

The Government Accounting Office found that local planners who have used simulations of this type believe them to be "indispensable" to effective planning, and the National Weather Service, Federal Emergency Management Agency (FEMA), the Corps of Engineers and GAO have all agreed that the SLOSH model is the most useful in providing comprehensive information for state-of-the-art planning.

The SLOSH model has to be specifically adapted for each coastal flood basin, a process known as Phase I. In order to provide detailed data from the model for use by planners, Phase II must be completed. In this phase, NWS will run an average of 250 simulations (or hurricane tracks) on the SLOSH model for each basin. This will eventually be completed for at least 21 basins of Coastal U.S. If funding is available, information obtained from the model is summarized and printed as a reference document.

During Hurricane Alicia, in Texas, SLOSH model data was available and most officials were familiar with the model, but encountered various difficulties in attempting to use SLOSH data during the storm. A few expressed the opinion that the data was in too complex a form to be helpful during the storm itself, according to a Congressional report. Finding the correct printed data, then calculating and plotting the data, can be a time consuming task, when several locations must be calculated during an extremely busy hurricane threat condition. In addition, when the strike point of the storm changes (possibly several times a day), all new calculations and plots must be performed using the printed data. For those areas with large tidal ranges, such as along the South Carolina coast (5-8 feet) additional calculation and plotting must be done to take into account the state of the tide at the time of hurricane strike. A computer calculation and display system has been developed to help insure realtime updating of the latest information from the SLOSH model as conditions change under hurricane threat.

After the SLOSH program (Phase I and II) is completed for a coastal basin, the output from the model is made available in computer printout form. These printouts constitute detailed data for scores of coastal points for 250 different combinations of storm track and storm intensity. From this volume of data, a set of 12 representative coastal points are selected...and time histories of storm surge and winds are transcribed from the printouts onto forms. From these forms, the data is entered into the minicomputer (described below) as BASIC language data statements (shown in Appendix A) which describe the storm surge profile for each point.

For planning purposes, any combination of storm track and intensity can be selected, along with time of arrival and time of high tide, to arrive at an almost infinite combination of possible storm conditions. Worst-case scenarios may then be developed, and timing of evacuation and location of shelters may then be refined.

In operational use, when hurricane conditions threaten, the user will obtain information on the expected storm track and intensity from the National Hurricane Center, and utilize local tide tables for tidal input to the program. These parameters will then be entered into the minicomputer and profiles for each of the representative coastal points will be quickly available either on screen or in printout form (hard copy). If the track or timing of the storm changes, the user would enter the new strike location and arrival time, and new surge profiles for each point would be available.

As shown in Figures 1 and 2, the model is capable of producing very good estimates of storm surge, given an accurate forecast track as input into the program. This means that in operational use, the program will be updated as each major change in forecast track occurs. The accuracy of the program will then approach the maximum accuracy of the SLOSH model when the strike point of the storm is relatively certain (in the last few hours before strike or earlier, if the storm is a very predictable one).

II. The SLOSH Display System

A. Hardware

Although each National Weather Service Office is equipped with an AFOS (Automation of Field Operations and Services) computer system, in normal use each computer handles a very large amount of information. Under hurricane threat, the system is under even more strain, in order to produce the increased amount of information demanded by the public. The addition of an interactive computer program to this system at such a time could cause, at the least, unacceptable periodic software overloads and interruption of use of AFOS at a critical time. For this reason, a separate relatively inexpensive system was chosen, which would also allow portability of the hardware and usage at other locations for planning purposes.

The hardware consists of the following:

- Radio Shack 64K TRS-80 Color Computer (Extended BASIC) Catalog number 26-3003
- Radio Shack Color 2 Disk Drive #10 Catalog number 26-3029
- Color Television Set preferably of good quality Size 12" probably ideal for desk-top operation:
- Radio Shack Color Ink-Jet Printer CGP-220 (for hard copies): Catalog number 26-1268
- 5. Diskettes (at least 10-pack) Catalog number 26-406
- Note--All necessary cables and plugs for computer and disk, as well as disk operating system, included as standard equipment.

B. Software

The main program, called SLOSHL, is written in TRS-80 Color Extended BASIC language (under license from Microsoft Corp.). It is written for the TRS-80 Disk Operating System and resides on each disk in the system. When the main program is called from the disk, it merges itself with smaller programs residing on the same disk, which represent the different hurricane tracks. There are about 250 of these small programs on 5 separate disks.

-3-

The main program is menu-driven, meaning that the screen provides you with several choices to make. The operator merely follows the directions and selects the options to make a hurricane storm surge chart for the particular track selected. Several machine-language routines were written especially for this program. They are called by the main program to produce alphanumerics on the graphic screen and to produce printouts of the screen from the printer. These routines are written in 6809E Machine Code. A complete description of this software and listings of the program will be in Appendix A.

III. Usage of the System

- * TURN ON ALL EQUIPMENT
- * INSERT DISK IN DISK DRIVE Choese the storm intensity (1-5) disk you desire. (Drive motor should be on)
- * ON THE KEYBOARD...TYPE RUN "S" (ENTER) Screen will display contents of disk and ask you to select either a number (representing a storm track) or "N" for next page

* TYPE EITHER A NUMBER (ENTER) or N (ENTER) for next page Note - track 3NW12L60 means Cat. 3 storm moving Northwest at 12 striking 60 miles Left of Reference point

If you go to the next page...more tracks will be displayed and you can select a track (number) or return to first page ("F")

If a number is entered representing a storm track...the program will first load the main program (SLOSH1) and then merge the selected track into it. The screen will clear and it will ask you to run the program as soon as an "OK" prompt is displayed.

* * AFTER "OK" PROMPT... TYPE RUN (ENTER)

Screen will clear and a menu will display on the screen. This is the Main Menu of the program and offers several selections.

- 1. Set arrival and Tide Times-
- 2. Graph Surge Only-
- 3. Graph Tide and Surge-
- 4. List Max. Surge (All)-
- 5. List Max. Tide + Surge (All)-

If you want to set a specific time of arrival for the storm...or want to factor in tides...then TYPE 1 (ENTER)

Screen will clear and you must enter time of arrival (local time) in four digits (0700,1200,1800,etc.) to the nearest whole hour. This is time of landfall, or if paralleling storm...then time of closest approach to reference.location (in this case, Charleston). TYPE (TIME) (ENTER)

Then enter time of High Tide at reference point...which occurs

---4--

between the hours displayed on the screen...if wrong entry, it will ask you again. Example of correct entry 0600 for 0900 arrival time ... incorrect entry 1000 for 0900 arrival time Tide times may be fractions of hours...0635, 1020, etc. TYPE (TIDE TIME) (ENTER) Press any key to return to Main Menu. (From Main Menu) If you want to display only the surge from the storm (without the effect -2 TYPE 2 (ENTER) of tides) Screen will clear...and you are asked to select a number representing the location you want. TYPE (LOCATION NUMBER) (ENTER) Screen will clear...and a graph will be drawn representing only the storm surge for that location. Times displayed on the screen will be constant unless they are set previously using Step 1. Display will stay on screen until one of the following keys are pressed: "M" Returns to Main Menu "P" Jumps to Print Routine BREAK Breaks program. To start again you must type RUN (ENTER) (From Main Menu) If you want to display the effects of storm surge plus tides..... then TYPE 3 (ENTER) Screen will clear...and you are asked to select a number representing the location you want. TYPE (LOCATION NUMBER) (ENTER) Screen will clear...and a graph will be drawn representing the total storm tide (Tide + Surge) for that location. The time of arrival and tides must have been entered in Step 1 or you will be routed back to that step to enter times. Display will remain on the screen until one of the following keys is pressed: "M" Returns to Main Menu "P" Jumps to Print Routine Breaks program. To start again you BREAK must type RUN (ENTER) (From Main Menu) To list the maximum surge for this track at each of the locations regardless of time that it occurred...TYPE 4 (ENTER) (From Main Menu) To list the maximum total storm tide (Tide + Surge) for each location, regardless of time that it occurred...TYPE 5 (ENTER) If time of tides and arrival time of storm has not been set in Step 1, you will be returned to that routine to set times.

-5-

(In Print Routine) - Print Routine is entered by pressing "P" when graph is displayed.

Screen displays a choice between a half-size and full-size printout. Make your choice by typing:

H	(ENTER)	for	half-size
F	(ENTER)	for	full-size

Half Size Print

Screen prompts you to prepare printer. Turn on printer and make sure ready light on printer is on. When printer is ready... Press (ENTER)

When using the half-size print...the program will display the graph on screen while printing. Keys are disabled during the printing. When finished...if you wish to return to the Main Menu...Press "M".

Full-Size Print

Screen prompts you to insert print routine disk in the disk drive...then Press (ENTER)

Screen prompts you to prepare printer. Turn on Printer and make sure ready light on printer is on. When printer is ready...Press (ENTER)

Screen prompts you to press Right Arrow and then press "D". Printer will start printing. Printout on full-size may be broken at any time by pressing BREAK twice. After printing...you may run the main program again by typing RUN (ENTER).

<u>IMPORTANT</u> - After running full-size printout...you may not load any other program from disk or that program will fail and possibly cause problems on the disk. When you want to run another track or another program (other than the one you are currently running)...first TYPE RUN 900 (ENTER)

REFERENCES

- Jarvinen, Brian, 1983, A Storm Surge Atlas for Southeast Florida: National Oceanic and Atmospheric Administration, National Hurricane Research Laboratory, Miami, FL, 324 p.
- Jelesnianski, C.P. 1972: SPLASH (Special Program to List Amplitudes of Surges from Hurricanes): I. Landfall Storms. NOAA Technical Memorandum NWS TDL-46, Washington D.C. 52p.
- Jelesnianski, C.P. and J. Chen, 1982: SLOSH (Sea, Lake and Overland Surges from Hurricanes). Techniques Development Laboratory, NOAA, National Weather Service, Silver Spring, Md., (unpublished manuscript)
- Myers, Vance A. 1975: Storm Tide Frequencies on the South Carolina Coast. NOAA Technical Report NWS-16, Office of Hydrology, Silver Spring, Md. 79 p.
- Purvis, John C., Perry, Mark, and Holland, Michael T. 1984: Maximum Envelope of Water and Time History for Hurricanes Affecting the South Carolina Coast. South Carolina Water Resources Commission, Columbia, S.C. 667 p.
- United States Congress, Committee on Government Operations 1983: Federal Assistance to States and Communities for Hurricane Preparedness Planning. U.S. Government Printing Office - House Report No. 98-557, Washington D.C. 37 p.

```
200 '* HURRICANE SURGE PROGRAM *
300 '* USING "SLOSH" HURRICANE *
400 '* SURGE MODEL OUTPUT
                              ÷
500 '* JOHN F. TOWNSEND
                              Ť
600 '* NATIONAL WEATHER SERVICE*
700 '*
       CHARLESTON S.C.
                              ÷.
800 '* VERSION 1.0
                    1/20/84 🗱
860 GOTO 1000
900 POKE113,3:EXEC40999
1000 IF PEEK(&H7F00)=99 THEN RUN 1280
1050 IF PEEK(&H7FFE)=99 THEN GOTO 1600
1109 GOTO 1300
1200 FOR I=1TO8:L$=L$+CHR$(PEEK(&H7F00+I)):NEXT:CLS:PRINT"***LOADING SLOSH ";L$;"***":PRINT
"...WAIT FOR OK..THEN RUN...":POKE&H7F00,0:MERGE L$
1300 CLEAR200,&H7790
1400 PCLEAR4
1500 LOADM"CHR/BIN": POKE&H7FFE, 99
1600 DIM TM(24):DIM TD(48):DIM S(24):DIM TS(24):DIM MS(15):DIM MT(15)
1700 L=31944:DEFUSR8=L:DEFUSR9=L+10:GOT0 1900
1800 M=USR8(A): M$=USR9(A$): RETURN
1900 'MENU
2000 CLS:PRINT"
                  WSO- CHARLESTON S.C.":PRINT@33,STRING$(3,42); PRINT"hurricane"+CHR$(12)
8)+"surge"+CHR$(128)+"program"+STRING$(4,42);:PRINT@65,"* USING 'SLOSH' MODEL OUTPUT *";:F
INT@97,STRING$(30,42)
2100 GOSUB 20000:PRINT0130,"CAT."+LEFT$(H$,1)+" MOVING "+MID$(H$,2,4)+" "+RIGHT$(H$,3)+"
/ CHS"
2200 PRINT@200,"---"+CHR$(128)+"menu"+CHR$(128)+"---":PRINT@226,"<1> SET ARRIVAL+TIDE TIMES
":PRINT@258,"<2> GRAPH SURGE ONLY":PRINT@290,"<3> GRAPH TIDE + SURGE"
2300 PRINT0322,"<4> LIST MAX.SURGE(ALL)":PRINT0354,"<5> LIST MAX.TIDE+SURGE(ALL)"
2400 PRINT0422, "YOUR CHOICE..."; : INPUTC1
2500 02=0
2600 IF C1>1 THEN GOTO 7000
2700 IF C1=1 THEN CLS:GOTO 2800
2800 CLS:PRINT"***USE EASTERN DAYLIGHT TIME***":PRINT@32*2+1,"ENTER TIME OF LANDFALL...OR
   CLOSEST APPROACH TO CHARLESTON IF MOVING PARALLEL TO COAST... TO NEAREST WHOLE HOUR.
        example 1500,0900, 2100 ETC.":INPUT " ENTER HERE>>>";TA
2900 IF RIGHT$(STR$(TA),2)<>"00" THEN 2800
3000 IF TA>2400 OR TAKO THEN 2800
3100 FT=TA-1200: IF FT<0 THEN FT=TA+1200
3200 PRINT:PRINT" NOW ENTER TIME OF HIGH TIDE AT CHARLESTON..... BETWEEN ";RIGHT$(
STR*(FT+10000),4);" SND ";RIGHT*(STR*(TA+10000),4);:INPUT" >>>";HT
3300 IF TA>1100 THEN IF HT>TA OR HT<FT THEN 3500
3400 IF TAK1200 AND HTKTA OR HT>FT THEN 3600
3500 INPUT" NOT IN BETWEEN ABOVE TIMES... ENTER AGAIN..."; HT: GOTO 3300
3600 PRINT:PRINT:PRINT" PRESS ANY KEY TO CONTINUE...";
3700 K$=INKEY$:IF K$="" THEN 3700
3800 GOTO 2000
```

3900 RESTORE: E=0 'READ DATA 4000 READ NO: E=E+1: IF NO=999 THEN RETURN 4100 MS(E)=0:EX=1 4200 READ L\$, TR, TC 4300 FOR I=0 TO 24:READ S(I):S(I)=S(I)/10 4400 IF S(I)>MS(E) THEN MS(E)=S(I) 4500 IF S(I)>11 OR S(I)<-6 THEN EX=2 4600 IF S(I)<-10 THEN S(I)=-10 4700 NEXT 4759 READ BG, SH, EH, EG 4800 IF C1=4 THEN PRINT032#E+26,MS(E); 4900 READ X#:IF X#<>"X" THEN CLS:PRINT" ERROR IN LINE ";E#10+20000:END 5000 IF C1=5 THEN GOTO 5400 5100 IF NO<>C2 THEN 4000 5200 RETURN 5300 'COMPUTE TIDES 5400 IF HT=0 THEN GOTO 2800 5509 HI=HT+TC 5600 DT=HI-FT: IF DT<0 THEN DT=2400-FT+HI 5700 FOR I=0 TO 48:TD(I)=COS(((2500-DT)/2500)*12.5563706+I*.251327412)*TR 5800 NEXT 5909 'CONBINE TIDE+SURGE 6000 MT(E)=0:EX=1 5100 FOR I=0 TO 24 6~~0 TS(I)=TD(I\$2)+S(I) Saud IF TS(I)>MT(E) THEN MT(E)=TS(I) 6400 IF TS(I)>12 OR TS(I)(-7 THEN EX=2 6500 IF TS(I)<-11 THEN TS(I)=-11 6600 NEXT 6700 IF C1=5 THEN PRINT032*(E+1)+26, USING ##.#"; MT(E); 6800 IF C1=5 THEN 5100 6900 RETURN 7000 'PRINT LIST+CHOICE 7100 IF C1=2 OR C1=3 THEN CLS:PRINT"**SURGE PROGRAM LOCATION LIST**" 7200 IF C1=4 THEN CLS:PRINT" ***MAXIMUM SURGE*** MSL" 7300 IF C1=5 THEN CLS:PRINT" ***MAXIMUM(TIDE+SURGE)*** MSL":PRINT" ARR.";TA;"-HIGH TIDE CH S";HT 7400 PRINT" <1>HILTON HEAD-F.F.BCH":PRINT" <2>BROAD RIVER-5 W OF NBC":PRINT" <3>SEABROOK IS LAND":PRINT" <4>DAWHOD RIVER":PRINT" <5>STOND RIVER":PRINT" <6>STOND INLET-KIAWAH":PRINT" < 7>ASHLEY RIVER 10NW CHS":PRINT" <8>CHARLESTON HARBOR" 7500 PRINT" <9>HIGHWAY 41-WANDO RIVER":PRINT" <10>GOOSE CREEK":PRINT" <11>GEORGETOWN-WINYAH BAY":PRINT" <12>MYRTLE BEACH":PRINT 7600 IF C1(4 THEN PRINT" your"+CHR\$(128)+"choice>>>"; 7700 IF C1=4 OR C1=5 THEN PRINT@32#14+2,"##computing...PLEASE WAIT##"; GOSUB 3900 ELSE GOTO 8199 7800 IF C1>3 THEN PRINT032#14+2," PRESS ANY KEY FOR menu>>>"; 7900 K\$=INKEY\$: IF K\$="" THEN 7900 8000 GOTO 2000 8100 INPUT C2 8280 PRINT" ###COMPUTING...###";)0 EX=1:GOSUB 3900

-9-. /

```
8400 IF C1=3 GOSU8 5300
8500 PMODE4,1:PCLS5:SCREEN 1,1:COLOR 0,5
8600 FI=TA/100-12: IF FI<0 THEN FI=24+FI
8700 FOR I=0 TO 24 STEP 3
8800 TM(I)=FI+I
8900 IF TM(I)>23 THEN TM(I)=TM(I)-24
9000 IF TM(I)<10 THEN A=21*32+4+I:A$=STR$(TM(I)):GOSUB1800:A$="0":GOSUB1800:GOTO 9300
9100 A=21*32+3+I:A$=STR$(TM(I))
9200 GOSUB 1800
9300 NEXT I
9400 8=4:A$=" HURRICANE SURGE PROGRAM ":POKE L+77,18:GOSUB 1800:POKE L+77,67
9500 A=32+2:A$="CAT."+LEFT$(H$,1)+" MOVING "+MID$(H$,2,4)+" "+RIGHT$(H$,3)+" / CHS":GOSUB
 1800
9600 DRAW*8M230,2R17D16L239U16R25*
9700 8=3*32+1:A$="MSL":GOSUB1800
9800 A=3#32+6:A$=L$:GOSUB1800
9900 A=3*32+28:A$="MLW":GOSUB1800
10000 A=4*32+1:A$=STR$(10*EX):GOSUB 1800
18108 8=4*32+28:8$=STR$(18*EX+3):SOSUB1808
10200 A=9*32+1:A$=STR$(5*EX):GOSUB 1800
10300 IF 5*EX+3>9 THEN A=9*32+28:A*=STR*(5*EX+3):GOSUB1800 ELSE A=9*32+29:A*=STR*(5*EX+3):G
OSU8 1800
10400 A=14#32+1:A$=STR$(0):GOSUB 1800
10500 A=14#32+29:A#=STR$(3):GOSUB1800
10600 A=19*32+1:A$=STR$(-5*EX):GOSUB 1800
10700 A=19#32+29:A$=STR$(-5#EX+3):GOSUB1800
10800 FOR I=4 TO 19
10900 A=I*32+4:A*=STRING*(25,"]"):GOSUB 1800:NEXT
11000 LINE (30,39)-(234,39), PSET: LINE(30,79)-(234,79), PSET: LINE(20,119)-(248,119), PSET: LINE
(30,159)-(234,159), PSET
11100 FOR I=0 TO 8:LINE(40+I*24,35)-(40+I*24,162).PSET:NEXT
11200 IF EX=1 THEN DRAW"BM18,84C0;R10NH3G3":DRAW"BM247,84C0;L10NE3F3":FOR I=41 TO 232 STEP
3:DRAW"8M"+STR$(I)+",86C0E3":NEXT
11300 IF EX=2 THEN DRAW"BM18,100C0;R10NH3G3":DRAW"BM247,100C0;L10NE3F3":FOR I=41 TO 232 STE
P 3:DRAW"BM"+STR$(I)+",103C0E2":NEXT
11400 IF C1=3 THEN A=32*6+8:A≉="TOTAL STORM TIDE":GOSUB 1800
11500 IF C1=2 THEN A=32*6+11:A*="SURGE ONLY":GOSUB 1800
11600 IF MID$(H$,2,2)="NE" THEN A=22#32+16:A$="CHS":GOSUB1800:GOT011720
11700 A=22*32+14:A$="Landfall":GOSUB1800
11720 A=22*32+1:A$="Wind:":GOSUB1800
11730 A=23*32+1:A$="Gale Hur":GOSUB1800
11750 DRAW"C0BM48,179D11H4"
11760 DRAW"C08M51,179D11E4"
11770 DRAW"C0BM95,179D11NH4U3H4"
11780 DRAW"C0BM98,179D11NE4U3E4"
11800 A=23*32+17:A$="Tide":GOSUB 1800
11900 R=23#32+24:A$="Surge":GOSUB 1800
12000 DRAW"BM168,189C0;U1R1D1BM+4,-2;U1R1D1BM+4,+2U1R1D1BM+4,-2U1R1D1"
12100 DRAW"8M233,187C0E2F3E3F4"
12200 DRAW"8M136,167;C0;U8NF3G3"
```

```
-10-
```

12300 'PLOT DATA 12400 IF C1=2 THEN 13200 12500 FOR I=0 TO 47 12600 DRAW"BM"+STR\$(40+I*4)+","+STR\$(INT(120-(TD(I)*8)*(1/EX)))+"C0U1R101L1" 12700 NEXT 12800 FOR 1=0 TO 23 12900 LINE((40+1*8),INT(120-(TS(I)*8)*(1/EX)))-((40+(1+1)*8),INT(120-(TS(I+1)*8)*(1/EX))),P SET. 13000 NEXT 13100 IF C1=3 THEN GOTO 13405 13200 FOR I=0 TO 23 13300 LINE((40+1*8),INT(120-(S(I)*8)*(1/EX)))-((40+(1+1)*8),INT(120-(S(I+1)*8)*(1/EX))),PSE Т 13400 NEXT 13405 L3=136 13410 IF BG=99 THEN 13420 13415 DRAW"C08M"+STR\$(INT(L3+BG*,08))+",147;D11H4" 13420 IF BH=99 THEN 13430 13425 DRAW"C08M"+STR\$(INT(L3+8H*.08))+",147;D11NH4U3H4" 13430 IF EH=99 THEN 13440 13435 DRAW"C8BN"+STR#(INT(L3+EH*.08))+",147;D11NE4U3E4" 13440 IF EG=99 THEN 13500 13445 DRBW"C0BN"+STR*(INT(L3+EG*.08))+",147;D11E4" 44500 A\$=INKEY\$:IF A\$="" THEN GOTO 13500 ∠600 IF A\$="M" THEN GOTO 2000 13700 IF A\$="P" THEN GOTO 13900 13800 GOTO 13500 13900 / ***SLOW SCREEN DUMP**** 13920 POKE150,18 13940 CLS:PRINT"****SCREEN DUMP ROUTINES********PRINT"HALF-SIZE...PRESS H<ENTER> FULL -SIZE...PRESS F(ENTER) >>>>>>>"): INPUT Q\$ 13960 IF Q\$="H" THEN CLS:PRINT"PREPARE PRINTER, PRESS(ENTER)":INPUT D\$:GOTO 14140 13980 IF PEEK(&H7FFD)=98 THEN 14020 14000 IF Q≉="F" THEN CLS:PRINT"INSERT SCREEN DUMP DISK...THEN PRESS (ENTER>"∶INPUT D≉:LOAD M"SWDUMP/BIN":POKE&H7FFD,98 14020 CLS:PRINT*PREPARE PRINTER...THEN PRESS <enter>";:INPUT D\$:IF D\$="TITLE" THEN PRINT #-2,CHR\$(27);CHR\$(14);CHR\$(27);CHR\$(84);CHR\$(52);" NATIONAL WEATHER SERVICE" ELSE GOTO 14680 14040 PRINT#-2,CHR\$(27);CHR\$(15); 14060 PRINT#-2," CHARLESTON, SOUTH CAROLINA" 14062 PRINT#-2, CHR\$(27); CHR\$(84); CHR\$(48); ARROW AND THEN PRESS(D) 14080 CLS: PRINT" AFTER OK... THEN PRESS RIGHT *****INPORT ANT NOTE*********** AFTER PRINTING...YOU MAY RUN THIS PROGRAM AGAIN...BUT YOU MUST DO A (RUN900) BEFORE RUNNING ANY OTHER PROGRAM OR 14100 PRINT" THAT PROGRAM WILL FAIL..." 14120 EXEC30661:STOP 14140 SCREEN1,1:EXEC&H7702:GOTO 13500

-11-

Program Listing - Data Statements (representing 1 track)

20000 H\$="3NW12L20":RETURN 20010 DATA 1.HILTON HEAD-F.F.BEACH.3.3.-30.10.11.12.13.14.15.16.17.18.15.12.0.-17.-32.-27.-12,-2,8,-2,-4,-6,-7,-5,-2,1,-810,-200,130,610,% 20020 DATA2, BROAD RIVER-5W NBC, 3, 5, 50, 10, 10, 11, 11, 12, 12, 13, 13, 15, 15, 10, 0, -9, -26, -38, -37, -25 ,-11,-1,0,0,0,0,0,0,-700,-130,250,740,X 20030 DATA3, SEABROOK ISLAND, 2.8, 0, 11, 12, 13, 15, 17, 19, 23, 28, 35, 44, 48, 48, 54, 47, 39, 27, 16, 13, 12, 10,7,5,3,5,7,-910,-420,320,700,X 20040 DATA4,DAWHOO RIVER,3.0,100,10,10,10,11,12,13,14,15,16,17,19,23,27,30,27,26,26,23,17,1 4,13,12,11,10,10,-820,-330,300,800,X 20050 DATA5.STONO RIVER, 2.7.30, 5, 5, 5, 5, 5, 5, 5, 6, 7, 9, 23, 47, 81, 89, 86, 81, 77, 73, 68, 63, 60, 56, 53 ,47,-850,-350,350,740,X 20060 DATA6,STONO INLET,2.7,0,13,15,17,19,20,23,28,35,47,62,78,97,99,83,58,41,19,19,17,16,1 5,14,13,12,11,-930,-440,320,700,% 20070 DATA7,ASHLEY RIYER 10NW CHS,2.0,40,11,13,15,16,17,19,22,25,31,38,46,66,131,150,130,10 3,83,68,56,47,43,39,33,29,28,-840,-350,350,740,X 20080 DATAS, CHARLESTON HARBOR, 2.6,0,13,15,17,19,20,23,28,35,46,62,83,112,127,116,82,44,26,1 9,18,18,17,17,15,15,14,-910,-410,320,720,X 20090 DATA9, HWY.41-WANDO RIVER, 2.7, 100, 10, 10, 10, 11, 12, 13, 14, 15, 16, 18, 21, 28, 46, 71, 82, 82, 74, 5 S, 63, 57, 55, 53, 52, 51, 44, -850, -340, 310, 720, X 20100 DATA10,GOOSE CREEK-ENTRANCE,2.6,100,10,10,10,10,10,10,10,10,10,10,11,12,12,24,73,59,5 5,52,47,43,39,38,37,36,35,-830,-320,340,750,X 20110 DATA11,GEORGETOWN-WINYAH BAY,2.0,30,11,12,13,14,15,16,17,19,22,25,28,34,38,42,42,40,2 7,32,29,27,25,23,21,19,18,-720,99,99,530,X 20120 DATA12, MYRTLE BEACH, 2.5, 10, 15, 16, 18, 18, 19, 21, 23, 25, 26, 28, 28, 29, 27, 24, 21, 15, 10, 10, 15, 1 8,15,10,8,9,10,-650,99,99,600,X,999

APPENDIX A - Program Listing Comments

. '

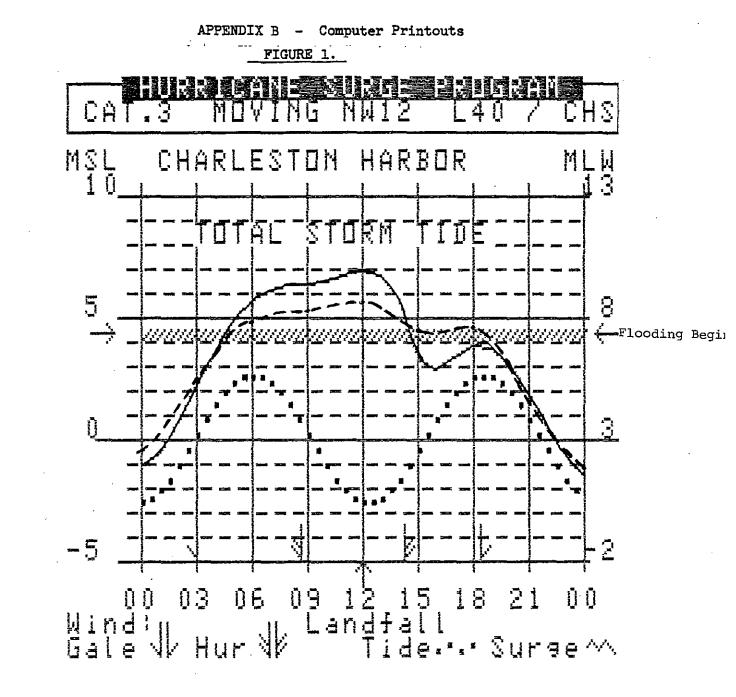
LINE (S)

 \frown

04-			
860	Jump over line 900 to protect from accidental use		
900	Cold restart for computer-used after running full-size printout		
1000	Flag to indicate initial load and merge from disk		
1050	If not initial load- go to Main Menu		
1100	If not either- then jump over line 1200		
1200	Get name of track from high memory-print prompt-merge track with		
	main SLOSH1 program		
1300	Clear high memory and reserve for machine-language routines		
1400	reserve memory for high-resolution graphics		
1500	Load Character generator file- flag that this is done		
1600	Dimension variables		
1700	Tell computer location of character generator program in memory		
1800	Subroutine to call character generator program- A is location on		
	graphics screen A\$ is character string to be printed		
2000-27	00 Main Menu- Variable Cl is your choice		
2800-38	00 Subroutine to set time of tides for day and arrival time of		
	stormroutes back to Main Menu on completion		
3900-52	00 Subroutine to read data from data statements (lines 20010		
	through 20120) representing surge profiles for this track.		
5300-58	00 Subroutine to compute hourly tide values and adjust for tidal		
	departures at different locations		
5900-69	00 Subroutine to compute hourly Tide + Surge for 25 hour period		
	straddling time of arrival of storm- also scale chart to size		
	which will include all data		
7000-84	00 Subroutine to print list of available locations for selection		
	or if Cl from Main Menu is 4 or 5to print list along with max		
	surges for each location		
8500	Initializes graphics parameters		
8600-12	200 Set up basic chart background, labels and legends on screen		
12300-1	3445 Draw plot of storm surges and tides on graphics screen		
13500-1	0-13800 When plotting finishedwait for key press"M" to return		
	to Main Menu "P" to go to screen print routine		
13900	Begin Screen Print subroutine		
13920	Set Baud rate for CGP-220 Printer to 2400		
13940-1	4100 Menu to set size of printout and prompt diskette switch if		
	full-size printout is chosen		
14120	Execute machine language program to printout full size		
14140	Execute machine language program to printout half size plus		
	return to graphics screen while printout in progress		
20000	H\$ = string identifying storm track in memory		
20010-2	0120 Data Statements for 12 different locations. Each data		
	statement line is divided up as follows:		
	* DATA - identifies line as data to be read into computer (from		
	subroutine at line 3900)		
	NUMBER - (1,2,3,etc.) - identifies location number		
	* NAME OF LOCATION - (Hilton Head, etc.)		

•

* MEAN TIDAL RANGE (Above and below MSL) - Example 3.3 (feet)
* TIDE DEPARTURE (TIME) FROM KEY LOCATION - (Example -30 is 30 minutes before Charleston)
* 25 HOURLY SURGES - (in tenths of feet, Example 10 = 1.0 feet) representing surges each hour from 12 hours before arrival time of storm to 12 hours after.
* WIND THRESHOLDS (4 items) - "Beginning of 40 Mile an hour winds "Beginning of Hurricane force winds "Ending of 40 mile an hour winds

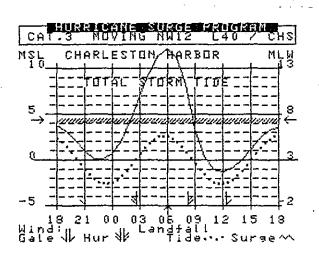
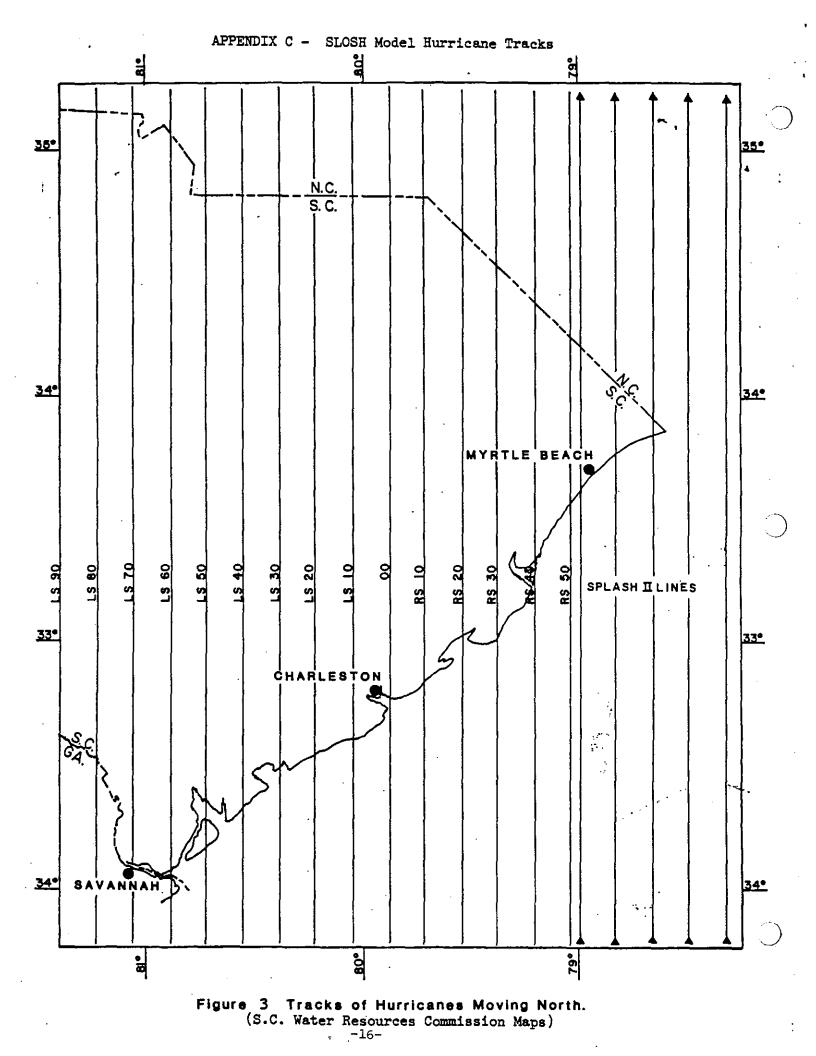

Times are in hours and minutes before (-) or after arrival of storm-

Example- -810 is 8 hours, 10 min before landfall 630 is 6 hours, 30 min after landfall

* END MARKER - "X" to identify end of statement

* (In last line only) END MARKER - "999" to identify end of all data statements

> Note: All items in each data statement must be separated by a comma (except between word "data" and the first item in the series)

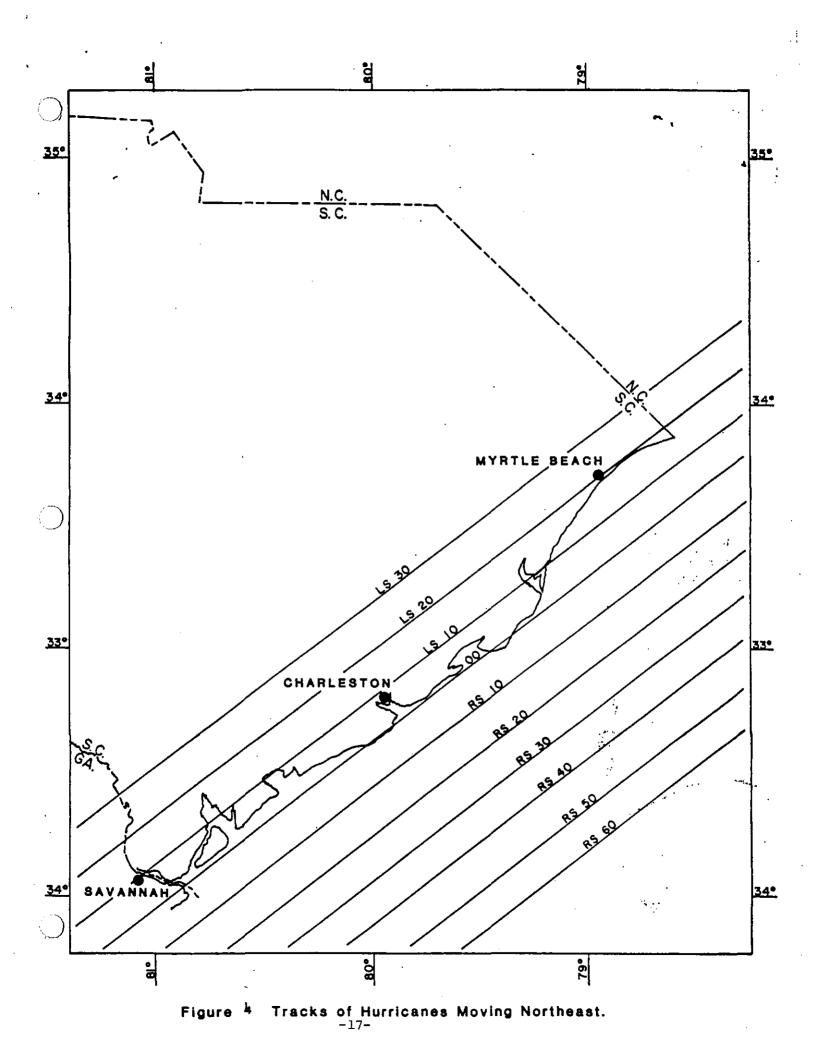

Figure 1 - (above) - Full size printout of SLOS storm tide forecast for Charleston Harbor usin a Cat. 3 storm moving northwest 12 mph. Landfall is St. Helena Sound area (40 left of CHS) The dashed line (added) is actual Hurricane Gracie tides in Charleston Harbor. Gracie was a Cat. 3 storm which struck 40 left of Charles ton with same landfall time and tides as those displayed.

Figure 2 -(left)-Half size printout of same storm as above, except landfall is 6 hours earlier, at time of high tide. This shows what Hurricane Gracie could have done, had it arrived 6 hours earlier. Computer calculation allows all-important tide factor to be figured rapidly as storm arrival time changes.

FIGURE 2

-15-

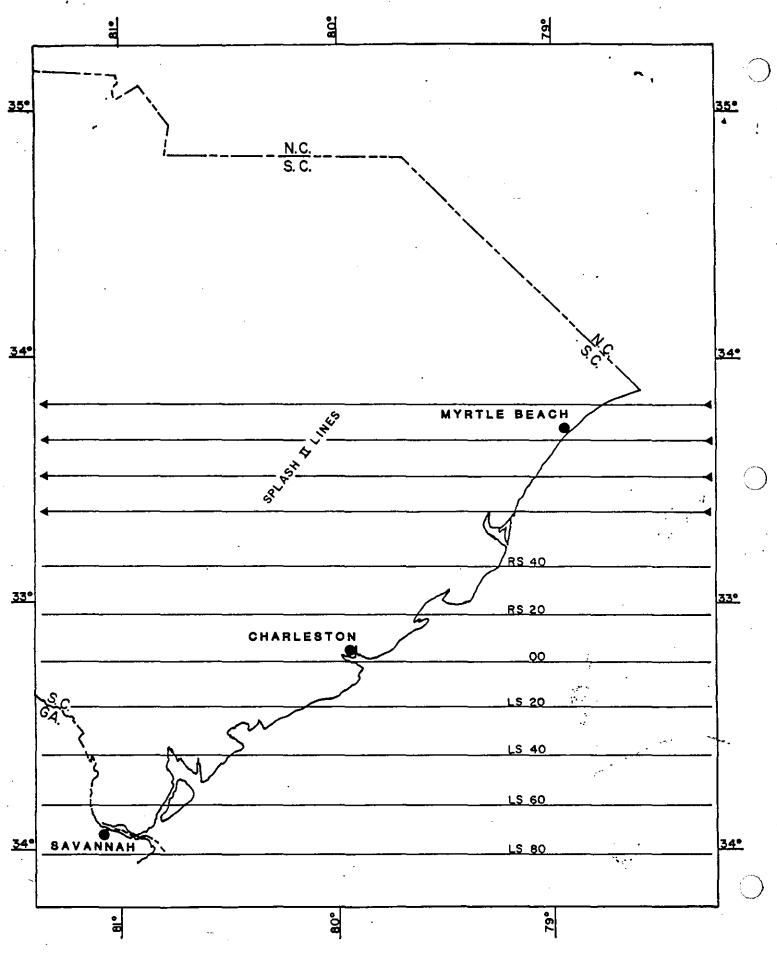
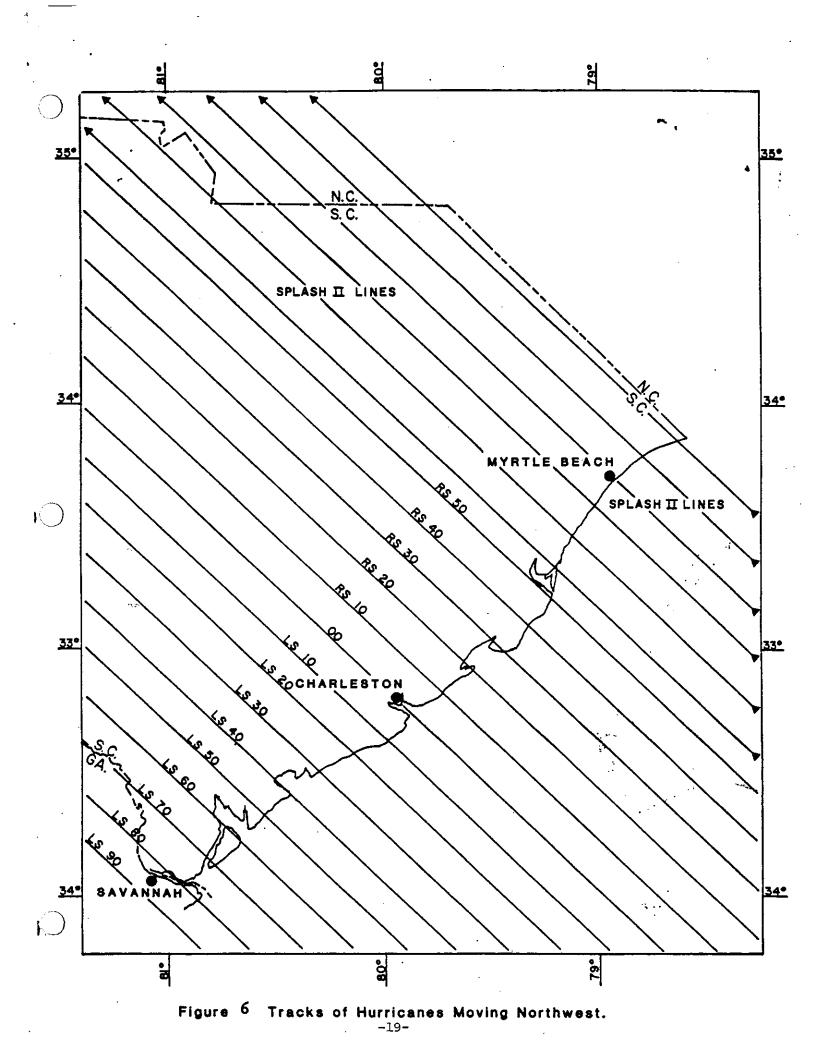



Figure 5 Tracks of Hurricanes Moving West.

-18-

 \sim